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Abstract

A reduced micromorphic model is formulated in the scope of crystal plastic-
ity and crystalline cleavage damage. The finite strain formulation utilizes a
single additional microvariable that is used to regularize localized inelastic
deformation mechanisms. Damage is formulated as a strain-like variable to
fit the generalized micromorphic microslip and/or microdamage based formu-
lation. Strategies of treating slip and damage simultaneously and separately
as non-local variables are investigated. The model accounts for size-effects
that simultaneously affect the hardening behaviour and allow to predict finite
width damage localization bands. The results show that the micromorphic
extension introduces extra-hardening in the vicinity of grain boundaries and
slip localization zones in polycrystals. At the single crystal level slip band
width is regularized. Two ways of dealing with damage localization were
identified: An indirect method based on controlling width of slip bands that
act as initiation sites for damage and a direct method in which damage flow
is regularized together with or separately from plastic slip. Application to a
real martensitic steel microstructure is investigated.
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1. Introduction1

Martensitic steels are widely used engineering materials because of their2

high strength and decent ductility, that play a role, for example, in the3

fatigue performance of the material. The microstructure of martensite is4

often rationalized by making distinction of prior austenite, blocks, packets5

and laths (Morito et al., 2003; Chatterjee et al., 2018).6

Various recent experimental and numerical studies have been devoted to7

investigate the deformation response of dual-phase, martensitic, and bainitic8

steels with an objective to reveal reasoning for strength-ductility trade-off,9

thermo-mechanical response, response to cyclic fatigue loading, and aging10

behavior of different steel grades. A matter of particular interest is the11

quantification of strengthening induced by plastic activity impeded by the12

hierarchical microstructure of these materials (Morsdorf et al., 2016; Du et al.,13

2016; Kwak et al., 2016). Strain heterogeneity further increases in the pres-14

ence of soft ferrite phase and intra-lath greasy austenite layers, which both15

can notably or only marginally increase the materials ductility (Asik et al.,16

2020; Tasan et al., 2014; Maresca et al., 2014, 2016). The latter allows for17

ductile-like plastic deformation accommodation between hard laths, but can18

transform to martensite already at small strains (Morsdorf et al., 2016). The19

ferrite phase, in turn, is stable and actively accommodating strains in the20

mixtures of ferrite-martensite-austenite microstructures, often at the expense21

of overall strength (Laukkanen et al., 2021). Adjusting the suitable phase22

fractions is challenging whenever detrimental effects are aimed to be mini-23

mized. As it comes, precipitates are one source of fine scale strengthening,24

however, they can also act as nucleation sites for, for example, brittle failure25

(Li et al., 2014; Vincent et al., 2010; Monnet et al., 2019).26

Optimization of advanced steels using robust R&D processes becomes27

attractive to enhance their performance and sustainability efficiently. To28

accomplish rapid development of these materials towards desired extreme29

mechanical properties, a valid computational framework can be used. In30

aforementioned studies, crystal plasticity models are the favored choice to31

undertake microstructure based analysis and design well-performing materi-32

als with targeted properties. In this domain, the intrinsic hierarchical mi-33

crostructural characteristics of martensite containing steels provide a focus34

of research not only for a length scale dependent plasticity model but also35

for a damage model capable of shedding light on damage and crack evolution36

in the microstructure.37
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Length scale dependent plasticity is indeed required when the size of the38

modeled constituents becomes close to the characteristic lengths of under-39

lying plastic deformation mechanisms (Fleck and Hutchinson, 1997; Kocks40

and Mecking, 2003). Accounting for the storage of geometrically necessary41

dislocations (GND) arising from shear strain gradients can be used in order42

to incorporate such scale dependencies in crystal plasticity theories (Ashby,43

1970; Acharya and Bassani, 2000). Models considering the full dislocation44

density tensor were developed for this purpose (Gurtin, 2002; Cordero et al.,45

2010; Kaiser and Menzel, 2019; Rys et al., 2020). These models were shown46

to be capable of predicting size-dependent hardening behaviours as well as47

to regularize shear band formation when strain softening occurs. In paral-48

lel, reduced gradient-enhanced crystal plasticity theories accounting for the49

gradients of a single scalar accumulated plastic slip variable were established50

(Wulfinghoff and Böhlke, 2012; Ling et al., 2018b; Scherer et al., 2019). This51

approach allows one to obtain less computationally demanding models, while52

still accounting for strain gradient contributions.53

Two principally different approaches remain popular for introducing dam-54

age with crystal plasticity level analysis when considering cyclic loading, the55

so called fatigue indicator parameters (FIP) and evolution based damage56

models. FIPs usually utilize the stress-strain response of a crystal plasticity57

model and post-process prevailing state after certain number of loading cy-58

cles to extrapolate material failure and/or remaining (fatigue) lifetime. The59

computational cost in most cases is less for the FIP based models than for evo-60

lution based damage, at the expense of omitting grain-to-grain propagation61

of damage and its effect on the performance outcome. Nonetheless, consid-62

ering the effectiveness of the FIP-models, it is possible to analyze causalities63

within the hierarchical martensitic microstructure (Schäfer et al., 2019; Li64

et al., 2016) or evaluate the effect of existing small and large defects (Pino-65

maa et al., 2019; Pineau and Forest, 2017).66

Evolution based crystal plasticity damage models are rarer, much owing67

firstly to the complexity of fracture in general and secondly to the distinguish-68

ing constitutive relations between dislocation driven plasticity and damage or69

crack evolution. Effort has been placed on adapting classical continuum dam-70

age mechanics to crystal plasticity and degrading material’s integrity during71

deformation with a plastic strain threshold value and evolution equation (Li72

et al., 2018; Zhao et al., 2019). In the same context, non-local crystal plas-73

ticity models are considered relevant to produce scaling effects and control74

of damage through a non-locality relation with dislocations, plastic strain,75
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and defected area growth (Boeff et al., 2014, 2015; Abu Al-Rub et al., 2015;76

Kweon, 2016; Ling et al., 2018b; Scherer et al., 2019). In terms of brittle77

fracture, cleavage fracture based models introduce crystalline level informed78

damage with a stress based initiation criterion (Wu and Zikry, 2014), which79

can be extended with a softening evolution coupling damage and plasticity80

(Aslan et al., 2011a; Lindroos et al., 2019). In many occasions, the non-81

locality of the models approaches the scope of scale dependent hardening82

provided by geometrically necessary dislocations at sufficiently small grain83

sizes. Micromorphic models have been developed in order to address regu-84

larization of plasticity and damage (Brepols et al., 2017), while extensions85

to crystal plasticity were introduced to cope with the need of microstruc-86

ture level predictions (Aslan et al., 2011a,b; Sabnis et al., 2016). Recent87

advancements also include the use of a coupled approach to describe damage88

evolution with phase field model and establish mechanical stress/strain state89

with a crystal plasticity model, including a capability to regularize damage90

(Tu and Ray, 2020). In order to account for size effects related to slip and91

address the regularization requirements of damage, there is a need to incor-92

porate finite strain non-local plasticity behavior and damage regularization93

in the same model for brittle fracture in a computationally efficient way.94

The micromorphic approach used in this work represents an extension95

of Eringen’s original micromorphic theory (Eringen and Suhubi, 1964) to96

additional degrees of freedom other than Erigen’s microdeformation tensor.97

Eringen, and Mindlin (Eringen and Suhubi, 1964; Mindlin, 1964) initially98

proposed to include the microdeformation of a triad of microstructure di-99

rectors and its gradient into the continuum modelling. The micromorphic100

approach proposed by (Forest, 2009, 2016) introduces additional degrees of101

freedom and their gradient that can be related to micro-plastic and micro-102

damage variables. The advantage is that scalar degrees of freedom can be103

used instead of Eringen’s full microdeformation tensor, so that computational104

efficiency can be improved. Since then, the method has been used by several105

authors, see for instance (Poh et al., 2011; Brepols et al., 2017), in the case106

of isotropic plasticity and damage. This approach was also applied to single107

crystals considering the curl of a plastic microdeformation tensor (Cordero108

et al., 2010). However this model is very expensive since it involves 9 addi-109

tional degrees of freedom at each node. That is why a reduced micromorphic110

model was then proposed by (Ling et al., 2018a) making use of the gradient of111

a single scalar variable representing the cumulative plastic slip. This model112

was further developed by (Scherer et al., 2019) for ductile damage applica-113
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tions. This reduced micromorphic model is explained in detail in the present114

work and extended to include new crystallographic damage mechanisms.115

In line with this view, this work uses a finite strain reduced micromorphic116

crystal plasticity model to investigate non-local behavior of slip and damage117

in BCC metals. The novelty of the present approach is within the scale de-118

pendent regularization of plastic slip bands and crystalline level damage in-119

corporated fully in the same model. Their interdependence is investigated in120

the context of lath martensitic steels. Special attention is placed on marten-121

sitic steels due to their inherent hierarchical strengthening characteristics122

making them a suitable application with also practical engineering signifi-123

cance. First, single crystal cases are studied with and without the damage124

model in order to determine the influences of several material parameters125

on size effects and regularization of localized inelastic phenomena. In the126

second part, the size effects produced by the model in absence of damage127

are investigated for polycrystals to assess the arising scale dependent hard-128

ening. Then, the model behavior is further analyzed with a prior-austenite129

based polycrystalline microstructure quantifying damage effects. Through-130

out, a range of parameters is studied to infer model behavior and prepare for131

future efforts focusing on directly establishing material specific calibrations.132

Finally, a martensitic microstructure is introduced and the model’s deforma-133

tion and damage response are examined in this domain. Discussion focuses134

on the essence of the crystal plasticity-damage modeling scheme’s suitability135

for polycrystals, especially on the application to modern martensitic steels.136

The choice of regularization method is finally reviewed in light of producing137

physically relevant length-scale dependent plasticity and damage response in138

a computationally efficient and tractable finite strain scheme.139

2. Crystal plasticity model140

2.1. Micromorphic approach141

A finite strain framework is adopted in which the deformation gradient F∼142

is multiplicatively decomposed into an elastic part F∼
e and an inelastic part143

F∼
i.144

F∼ =
∂x

∂X
= F∼

e.F∼
i (1)
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The velocity gradient L∼ comprises a purely elastic contribution and a con-145

tribution associated to inelastic deformation mechanisms.146

L∼ = Ḟ∼ .F∼
−1 = Ḟ∼

e
.F∼

e−1 + F∼
e.L∼

i.F∼
e−1 (2)

In the context of crystal plasticity the latter is classically decomposed into147

a sum of plastic slip rates γ̇s over all slip systems (slip system number is148

denoted by superscript s). The direction of plastic slip rate is governed by the149

dislocations gliding directions m s and normal to slip planes n s. Following150

(Aslan et al., 2011a) additional inelastic rates are introduced in order to151

account for damage by crack opening rate δ̇kc and crack shearing rates δ̇k1 and152

δ̇k2 (damage mechanism number is denoted by superscript k). The direction153

of damage rate is governed by the normal to cleavage planes n k
d and their in154

plane orthogonal directions ` kd1 and ` kd2.155

L∼
i = Ḟ∼

i
.F∼

i−1
=

Ns∑
s=1

γ̇s(m s ⊗ n s)

+

Ndamage∑
k=1

δ̇kc (n k
d ⊗ n k

d) + δ̇k1(` kd1 ⊗ n k
d) + δ̇k2(` kd2 ⊗ n k

d)

(3)

In keeping with (Wulfinghoff and Böhlke, 2012) an equivalent plastic strain156

gradient enhancement of single crystal plasticity is adopted. The micro-157

morphic approach (Forest, 2009) is followed in order to derive a finite strain158

crystal plasticity model which accounts for and regularizes plastic slip and/or159

damage. The variable γcum is introduced as the variable whose gradients will160

play a role in the constitutive behaviour. Three different formulations are161

considered, for each of which the definition of γcum differs. The first considers162

plastic slip regularization only:163

γcum =

∫ t

0

Ns∑
s=1

|γ̇s| dt (4)

The second accounts for both plastic slip and damage regularization:164

γcum =

∫ t

0

Ns∑
s=1

|γ̇s| dt+

∫ t

0

Ndamage∑
k=1

(|δ̇kc |+ |δ̇k1 |+ |δ̇k2 |) dt (5)
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The third involves damage regularization only:165

γcum =

∫ t

0

Ndamage∑
k=1

(|δ̇kc |+ |δ̇k1 |+ |δ̇k2 |) dt (6)

In all three cases, the non-local counterpart of γcum is denoted γχ and is166

treated as an additional degree of freedom. Therefore even when both slip167

and damage are regularized simultaneously, a single micromorphic variable168

is used. The Lagrangian gradient of γχ is denoted K χ.169

K χ =
∂γχ
∂X

(7)

In conventional continuum mechanics the power of internal forces is S∼ : Ḟ∼ ,170

where S∼ denotes the first Piola-Kirchhoff stress related to the Cauchy stress171

by S∼ = det (F∼ )σ∼F∼
−T . The standard principle of virtual power is extended172

to higher order contributions, namely to contributions of γχ and K χ which173

energetic counterparts are respectively the scalar stress S and vector stress174

M . In addition a generalized contact force M , conjugate to γχ is introduced.175

For any subdomain D0 it is written as176 ∫
D0

(
S∼ : Ḟ∼ + Sγ̇χ +M .K̇ χ

)
dV0 =

∫
∂D0

(T .u̇ +Mγ̇χ) dS0 ∀u̇ , ∀γ̇χ, ∀D0 (8)

The application of Gauss’ theorem leads to the balance equations177

DivS∼ = 0 (9)

DivM − S = 0 (10)

and associated boundary conditions, with surface normal n 0 in the reference178

configuration179

T = S∼ .n 0 (11)

M = M .n 0 (12)

The elastic Green-Lagrange strain E∼
e
GL

is introduced as follows180

E∼
e
GL

=
1

2

(
F∼
eT .F∼

e − 1∼
)

(13)

7



It is considered as a state variable involved in the elastic part of the free181

energy density. Other state variables are hardening variables involved in the182

hardening part of the free energy density. The hardening variables noted ρs,183

left to be defined, and the cumulated damage variable d =
∫ t
0

∑Ndamage
k=1 δ̇kc +184

δ̇k1 + δ̇k2 dt will be used as the hardening variables. Furthermore γcum, γχ and185

K χ are the state variables involved in the nonlocal part or the free energy186

density. A quadratic form of the nonlocal free energy potential is chosen for187

simplicity. The higher order modulus A scales the material characteristic188

length. In addition a penalization term is introduced with the penalization189

modulus Hχ . In order to enforce quasi-equality between γcum and γχ a large190

value of the penalization modulus is usually used. The chosen specific free191

energy density is given by192

ψ
(
E∼
e
GL
, ρs, γcum, γχ,K χ

)
=

1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(ρ
s, d)

+
A

2ρ0
K χ.K χ +

Hχ

2ρ0
(γcum − γχ)2

(14)

ρ] and ρ0 denote the volumetric mass density in the intermediate and initial193

configurations respectively. It must be noted that the non-local contribution194

to the free energy, namely the two last terms in Eq. (14), depend on the choice195

of the expression of γcum that is made. If Eq. (4) is chosen, only plastic slip196

gradients play a role in the free energy density, while if Eq. (6) is used, only197

damage gradients play a role in the free energy density. When Eq. (5) is198

considered, it is gradients of the cumulated damage and slip variable which199

come into play in the free energy density. The Clausius-Duhem inequality200

obtained from 1st and 2nd principles of thermodynamics enforces201

S∼
ρ0

: Ḟ∼ +
S

ρ0
γ̇χ +

M

ρ0
K̇ χ − ψ̇ ≥ 0 (15)

The first term on left-hand side of Eq. (15) can be reformulated in terms of202

the following stress measures203

Π∼
e = det (F∼

e)F∼
e−1.σ∼ .F∼

e−T = det (F∼
e)F∼

e−1.S∼ .F∼
iT (16)

Π∼
M = F∼

eT .F∼
e.Π∼

e (17)

where Π∼
M is Mandel’s stress tensor. Eq. (15) becomes204

Π∼
e

ρ]
: Ė∼

e

GL
+

Π∼
M

ρ]
:
(
Ḟ∼
i.F∼

i−1
)

+
S

ρ0
γ̇χ +

M

ρ0
.K̇ χ − ψ̇ ≥ 0 (18)
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Following the Colleman-Noll procedure the state laws are postulated205

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

= C
≈

: E∼
e
GL

(19)

S = ρ0
∂ψ

∂γχ
= −Hχ(γcum − γχ) (20)

M = ρ0
∂ψ

∂K χ

= AK χ (21)

When both plastic slip and damage are accounted for in the definition of206

γcum, the residual mechanical dissipation can hence be written207

d =
Ns∑
s=1

(
|τ s|+ ρ]

ρ0
S

)
|γ̇s| − ρ]

∂ψh
∂ρs

ρ̇s

+

Ndamage∑
k=1

(
|σdc|+

ρ]
ρ0
S − ρ]

∂ψh
∂d

)
|δ̇kc |

+

Ndamage∑
k=1

(
|τ kd1|+

ρ]
ρ0
S − ρ]

∂ψh
∂d

)
|δ̇k1 |

+

Ndamage∑
k=1

(
|τ kd2|+

ρ]
ρ0
S − ρ]

∂ψh
∂d

)
|δ̇k2 |

(22)

where τ s is the resolved shear stress on slip system s, σdc is the opening208

stress for a cleavage plane, τ kd1 and τ kd2 are shear stresses on the cleavage209

planes. The damage model is further reviewed in the following sections.210

However, if only plastic slips are considered to define γcum the term211

(ρ]/ρ0)S vanishes from the three last terms in Eq. (22). On the contrary, if212

only damage is used to define γcum the term (ρ]/ρ0)S vanishes from the first213

sum in Eq. (22). Positivity of the dissipation in all these three cases will214

be ensured by the choice of adequate yield and damage criteria presented in215

following section.216

2.2. Single crystal model217

The single crystal model follows the general principles of our previous
work focusing on fatigue damage formulation of martensitic steels using con-
ventional crystal plasticity framework (Lindroos et al., 2019). A gradient
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plasticity extension and applied modifications on the damage model are pre-
sented in the following. Inelastic strain rate consist in the sum of plastic
slip of dislocations and a strain-like contribution due to damage. A strain-
like formulation of damage presents the benefits of allowing the tracking of
opening and closure of cracks and of being straightforwardly embedded in
the present micromorphic crystal plasticity model. The form presented in
equation (3) may be expressed as an additive decomposition:

L∼
i = L∼

p +L∼
d (23)

The contribution of dislocation slip responsible of plastic deformation is given
by:

L∼
p =

Ns∑
s=1

γ̇s (m s ⊗ n s) (24)

The slip rate is provided by a rate dependent form

γ̇s = ν̇s sign(τ s) =

〈 |τ s| − (rs + τ0 − S)

K

〉n
sign(τ s) (25)

where < · > are Macaulay brackets, material parameters K and n char-
acterize the viscosity, νs =

∫ t
0
|γs| dt, and τ s = n s ·Π∼ M · ` s, are the current

cumulative slip and resolved shear stress in a system s, respectively. Slip
plane normal is denoted with n s and slip direction by ` s. τ0 is the ini-
tial shear resistance of slip system families {110} <111> and {112} <111>.
For simplicity, the initial shear resistance is assumed the same for both slip
families. rs is the isotropic hardening term derived from ψh, and S is the
generalized stress. S only appears in Eq. (25) if plastic slips are accounted
for to define γcum and is thus absent if damage regularization only (i.e. Eq.
(6)) is considered. Following the nonlinear form suggested by Aslan et al.
(2011a), the hardening potential ψh(ρ

s, d) unspecified in Eq. (14) is supposed
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to take the following expression

ψh(ρ
s, d) =

1

2ρ0
Q

Ns∑
i=1

(ρi)2 +
σ0
cd

ρ0
exp

(
−β

Ns∑
s=1

νs

)
+

1

2ρ0
Hd2 (26)

=
1

2ρ0
Q

Ns∑
i=1

(
Ns∑
j=1

Hij

(
1− exp

(
−bνj

))
− σ0

cβd

Q
exp

(
−β

Ns∑
j=1

νj

))2

(27)

+
σ0
cd

ρ0
exp

(
−β

Ns∑
s=1

νs

)
+

1

2ρ0
Hd2

where the chosen expression of the hardening variables ρi is defined in Eq.
(27). Hij is the slip-slip interaction matrix (24x24) for which only 8 indepen-
dent coefficients h1, ..., h8 are considered (Hoc and Forest, 2001) (see Table
1). σ0

c is the initial cleavage resistance, and β is the coupling factor relating
slip and damage mechanisms. Isotropic hardening arises from dislocation in-
teractions and damage is assumed to soften the slip resistance after damage
initiation. The hardening terms take the following expression

ri = ρ0
∂ψh
∂ρi

= Q
Ns∑
j=1

Hij

(
1− exp

(
−bνj

))
− σ0

cβd exp

(
−β

Ns∑
j=1

νj

)
(28)

Exponential form results from the choice of free energy potential that couples
slip and damage activities. Accumulation of slip is assumed to decrease the
cleavage resistance, as it becomes clear in the presentation of the damage
formulation hereafter. The damage contribution to inelastic strain is a sum
of three damage mechanism related contributions.

L∼
d =

Ndamage∑
k=1

δ̇kc
(
n k
d ⊗ n k

d

)
+ δ̇k1

(
` kd1 ⊗ n k

d

)
+ δ̇k2

(
` kd2 ⊗ n k

d

)
(29)

where δ̇kc , δ̇k1 , δ̇k2 are the strain rates for mode I like crack opening, mode II
and mode III shear crack growth, respectively. The number of damage planes
is noted Ndamage. In the following, {100} crystallographic planes will be con-
sidered as the cleavage planes existing in a BCC crystal structure. Cleavage
damage is activated by the opening δc of cleavage planes with the normal
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vector n k
d. Shear damage accommodate in-plane deformation in orthogonal

directions ` kd1 and ` kd2. The evolution of the opening rate is given by:

δ̇kc =

〈 |σdc| − (Y k
c − S)

Kd

〉nd
sign(σdc) with σdc = n k

d ·Π∼ M · n k
d (30)

Crack opening damage strain δ̇kc becomes active when the cleavage opening
resistance Y k

c is exceeded by the normal stress σdc acting on the cleavage
planes. The strain like treatment of the opening damage allows to track
crack closure. In the spirit of smeared crack behavior the constraint that
δkc ≥ 0 is imposed, in order to prevent crack opening when the opening
stress is negative. The rates of damage shear mechanisms use the same rate
dependent formulation:

δ̇ki =

〈 |τdi| − (Y k
i − S)

Kd

〉nd
sign(τdi) with τdi = n k

d ·Π∼ M · ` kdi (31)

where shear stress τdi activates the damage shear mechanisms after shear218

resistance Y k
i is met. Viscous parameters Kd and nd are taken to be same219

for crack opening and shearing mechanisms. S only appears in Eq. (30)220

and (31) if damage mechanisms are accounted for to define γcum and is thus221

absent if slip regularization only (i.e. Eq. (4)) is considered.222

Cleavage is expected to occur in the region with large plastic activity.
Shear localization therefore reduces cleavage resistance and promotes damage
initiation at these sites. After damage initiation, the cleavage resistance also
decreases with the linear softening modulus H. Cleavage resistance is set to
be always positive for numerical reasons with a constraint that Y k

c ≥ σult,
where residual strength σult is chosen small, for example σult = σ0

c/200.

Y k
c = Y k

i = ρ0
∂ψh
∂d

= σ0
c exp

(
−β

Ns∑
s=1

νs

)
+Hd (32)

Regularization established with the generalized stress can then be chosen to223

adapt on slip alone, regularizing slip band formation and generating plas-224

ticity size effects. The effect on damage is indirect through the control of225

plasticity affected regions. Damage regularization may be achieved directly226

by introducing a contribution of the generalized stress term into the cleavage227

resistance. This is achieved by accounting for the definition of γcum at Eq.228

(6). This formulation also regularizes plastic slip indirectly by affecting the229
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damage related softening of the slip resistance. If the cumulative inelastic230

variable is chosen to account for both slip and damage as in Eq. (5), the231

regularization is hybrid, affecting and creating direct coupling between both232

inelastic mechanisms. The following section reviews some of the characteris-233

tics of these alternatives.234

3. Results235

The model was implemented in the finite element software Z–set (Besson236

and Foerch, 1998; Z–set package, 2013). The constitutive behaviour is dis-237

cretized following a forward-Euler scheme and integration is achieved with a238

Runge-Kutta algorithm. In order to validate the finite element implementa-239

tion in absence of damage, numerical predictions were compared to analytical240

solutions derived on a two-phase laminate in the spirit of Forest (2008). De-241

tails on this benchmark example are presented in Appendix A. Influence of242

the key material parameters are analyzed below.243

3.1. Single crystal case with damage244

A single crystal perforated plate of width L0, and cylindrical void radius245

R0, is loaded in tension as depicted in Figure 1. The initial void volume246

fraction, defined as πR2
0/L

2
0, is equal to 1% . The orientation of the BCC247

single crystal is defined with respect to the orthonormal basis (X 1,X 2,X 3)248

attached to the specimen. Three dimensional brick elements with reduced249

integration at 8 Gauss points are used. The displacement degrees of freedom250

are interpolated with quadratic shape functions and the microslip degrees251

of freedom γχ are interpolated with linear shape functions. After (Hoc and252

Forest, 2001), the number of independent coefficients is reduced to eight in253

the 24x24 interaction matrix by classifying the slips systems belonging to the254

same slip family into collinear and non-collinear systems. These coefficients255

are noted hi with i = 1..8 as presented in Table 1. Numerical values of256

material parameters are listed in Table 2. Convergence with respect to mesh257

size was checked as presented in Appendix B and showed that predictions are258

already converged with a mesh composed of 400 elements and 9880 degrees259

of freedom. Unless otherwise stated crystal axes [100], [010] and [001] are260

initially respectively aligned with the basis vectors X 1, X 2 and X 3.261

Importance of the variable on which regularization operates is first as-262

sessed. Three different definitions of the scalar variable γcum bearing gradient263

effects were given in Eq. (4), (5) and (6). Each formulation is used in the264
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Figure 1: Single crystal perforated plate geometry and applied boundary conditions.

Table 1: Coefficients for the interaction matrix in BCC crystals (Hoc and Forest, 2001).

Plane {110} ∩ {110} {110} ∩ {112} {112} ∩ {112}
Same h8 - h1

Colinear h2 h3 h6

Non-colinear h4 h5 h7

14



Table 2: Numerical values of material parameters for single crystal model used in single
and polycrystal simulations. hi are interaction matrix coefficients.

Parameter Value Unit

Elastic constants

C11 197000 [MPa]

C12 134000 [MPa]

C44 105000 [MPa]

Slip parameters

τ s0 163 [MPa]

K 163 [MPa.s1/n]

n 30 [MPa]

b 19 -

Q 30 -

h1 1.3 -

h2 1.0 -

h3 1.05 -

h4 1.15 -

h5 1.1025 -

h6 1.3 -

h7 1.495 -

h8 1.0 -

Damage parameters

σ0
c 2100 [MPa]

Kd 50 [MPa.s1/nd ]

nd 3 -

H -1750 [MPa]

β 5 -

Gradient parameters

Hχ 103 – 107 [MPa]

A 0; 1; 10; 100; 1000 [N]
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Figure 2: Influence of the chosen variable for gradient regularization on (a) the stress-
strain behaviour and (b) average cumulated damage evolution for a [100] − [010] − [001]
crystal orientation. H

χ
is set to 104 MPa.

perforated plate specimen example with the same initial crystal orientation265

and material parameters. Simulations were run with the mesh composed of266

400 elements. The same test is also performed without any regularization.267

Figure 2 shows the macroscopic stress-strain and average cumulated damage268

responses. The choice of the regularized variable definition appears critical269

since very distinct behaviours are observed for each definition. When only270

plastic slip is regularized (Eq. (4)) acceleration of damage sets on the earliest271

and consequently the macroscopic stress drops the earliest. This is due to the272

fact that damage is only indirectly smoothed out by the strain gradient hard-273

ening induced by plastic slip localization. When only damage is regularized274

(Eq. (5)) steepening of the average cumulated damage evolution occurs at275

slightly larger macroscopic strains. Therefore macroscopic softening is also276

slightly postponed as compared to slip-only regularization. In this case, dam-277

age localization is directly penalized and plastic slip localization is indirectly278

smoothed out by damage localization induced hardening. When both slip279

and damage variables are regularized (Eq. (6)), average cumulated damage280

acceleration is again postponed as compared to the case when only one of281

the two variables is considered for regularization. Nevertheless the slope of282

cumulated damage increase is almost identical for the three regularization283

options. On the contrary the softening regime observed with the combined284

slip and damage regularization is much less abrupt. Influence of the choice285

of the regularization variable will be further investigated and discussed on286
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polycrystals simulations presented in Section 3.3 and 3.4.287

The influence of higher order moduli Hχ and A are investigated. The288

penalty modulus Hχ serves to penalize the difference between γcum and γχ.289

Therefore the larger Hχ is, the lower this difference is. Usually a large value is290

used so that the micromorphic formulation approaches results corresponding291

to conventional strain gradient plasticity which is the limit case when Hχ292

goes to infinity. Five different values of Hχ , ranging from 103 to 107 MPa, are293

considered. Figure 3a displays how Hχ plays on the macroscopic hardening294

behaviour. It can be observed that the macroscopic apparent yield stress is295

not affected by the value of Hχ . However increasing Hχ results in a larger296

apparent hardening modulus. Although convergence in terms of Hχ value297

was not attained, it is expected that when increasing Hχ a saturation of298

the increase of the hardening slope would eventually be reached. A corollary299

effect can be noted on the average cumulated damage curves plotted in Figure300

3b. For the lowest Hχ value of 103 MPa, damage acceleration sets on the301

earliest. However for larger Hχ values it can be observed that the higher302

Hχ is, the earlier average damage starts to accelerate and simultaneously303

macroscopic stress starts to drop. Once damage accelerated, the slopes of304

damage evolution are parallel to one another for Hχ values ranging from305

104 to 107 MPa. Yet, increasing the value of Hχ raises significantly the306

computation time. This is due to the fact that increasing Hχ forces to reduce307

the time steps when integrating the plastic slip evolution equations in which308

the higher order stress S = Hχ(γχ − γcum) is involved. The choice of a309

suitable Hχ value is hence a competition between desired scaling behaviour310

and affordable computational effort.311

The higher order modulus A (unit MPa.mm2) contains the characteris-312

tic length of the medium. Conventional plasticity, not accounting for strain313

gradient effects, corresponds to a medium with a vanishing characteristic314

length with A = 0 MPa.mm2. Increasing A amounts to increase this intrin-315

sic length. In order to characterize the effect of A on regularization of slip316

and damage we consider three different crystal orientations, respectively hav-317

ing the triplet of crystal directions ([100], [010], [001]), ([110], [1̄10], [001]) and318

([111], [2̄11], [01̄1]) aligned with the orthonormal basis (X 1, X 2, X 3). For319

each orientation several values of A are used ranging between 0 MPa.mm2
320

and 1000 MPa.mm2. Figure 4 displays macroscopic stress-strain and aver-321

age cumulated damage curves obtained for each crystal orientation and A322

values. The main features to be noted is that A plays an important role323

simultaneously on the hardening behaviour, on strain at damage onset and324
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Figure 3: Influence of penalty modulus Hχ on (a) the stress-strain behaviour and (b)
average cumulated damage evolution for a [100]− [010]− [001] crystal orientation.

softening behaviour. When A is increased a stronger apparent strain hard-325

ening is observed, damage onset is postponed and softening rate is reduced.326

It can interestingly be remarked that intensity of the effect of A varies with327

the initial crystal orientation. A significant influence of A is visible on hard-328

ening and strain at damage onset for crystal orientations ([100], [010], [001])329

and ([111], [2̄11], [01̄1]). However for crystal orientation ([110], [1̄10], [001])330

almost no influence of A is observed on the behaviour prior to damage on-331

set. For the three crystal orientations, a larger value of A results in a slower332

acceleration of damage. In addition, when comparing results with A=100333

MPa.mm2 and A=1000 MPa.mm2 a saturation of the size effect induced by334

A seems to have been reached in this example since stress-strain and average335

cumulated damage curves are almost superimposed.336

The effect of A on damage fields is of paramount importance. The aim337

of this strain gradient model to regularize simultaneously slip and damage338

quantities can be assessed by comparing results when A vanishes (conven-339

tional plasticity) and when it takes values different from zero. Figure 5 shows340

the contours of damage fields for each crystal orientation and for several val-341

ues of A. When A=0 MPa.mm2 damage is localized in the vicinity of the hole342

and forms a very thin band oriented perpendicularly to the loading direction.343

The width of this localization band is mesh-size dependent. However when344

strain or damage gradients are accounted for (i.e. A 6= 0) the localization345

band spreads over a larger distance along the tensile direction and perpen-346

dicularly to the tensile direction. In this case results are no longer mesh-size347
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Figure 4: Influence of parameter A on macroscopic stress-strain and average cumulated
damage curves for crystal directions ([100], [010], [001]) in (a-b), ([110], [1̄10], [001]) in (c-d)
and ([111], [2̄11], [01̄1]) in (e-f). H

χ
is set to 104 MPa.
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dependent (owing to the fact that convergence was reached as shown in Ap-348

pendix B). It can be observed that orientation of the regularized damage349

localization band is not only affected by the main loading direction but also350

by the initial crystal orientation. The damage localization band appears351

slanted for the ([100], [010], [001]) orientation, while it remains perpendicular352

to the loading direction for the ([111], [2̄11], [01̄1]) orientation. The largest353

A value causes damage to spread over almost the whole geometry. How-354

ever, and although saturation of macroscopic size effects seems to have been355

reached, some gradients of damage still persist.356

A description of the role of parameter β and H involved in the evolution357

of cleavage resistance defined at Eq. (32) is given in Appendix C.358
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(a) A = 0 N at F 11 = 1.030 (b) A = 10 N at F 11 = 1.114 (c) A = 1000 N at F 11 = 1.180

(d) A = 0 N at F 11 = 1.146 (e) A = 10 N at F 11 = 1.195 (f) A = 1000 N at F 11 = 1.237

(g) A = 0 N at F 11 = 1.105 (h) A = 10 N at F 11 = 1.105 (i) A = 1000 N at F 11 = 1.115

Figure 5: Influence of parameter A on damage variable fields for crystal directions
([100], [010], [001]) in (a-c), ([110], [1̄10], [001]) in (d-f) and ([111], [2̄11], [01̄1]) in (g-i).
A = 0 N in (a, d, g) , A = 10 N in (b, e, h) and A = 1000 N in (c, f, i). H

χ
is set

to 104 MPa.
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3.2. Scaling effects in polycrystals359

To demonstrate the grain-to-grain strengthening behavior of the model,360

a polycrystalline microstructure is introduced. The polycrystal includes 50361

non-equal sized grains all having different orientation. This setting reduces362

martensitic microstructure greatly to only include prior austenite grains for363

the sake of simplicity. Kinematic uniform boundary conditions are imposed364

for a uniaxial tensile simulation, as is presented in Figure 6h. All meshes365

are 3D with one element in the thickness direction. At grain boundaries,366

continuity of displacement and microslip degrees of freedom are considered.367

In addition, continuity of usual tractions (σ∼ .n , with n the grain boundary368

normal) and generalized tractions (M .n ) are used. Other possibilities would369

be to consider so-called microhard interface conditions (γχ = 0) or microfree370

interface conditions (M .n = 0) as proposed by Gurtin (2004).371

Figure 6 demonstrates the scaling capability of the model for a poly-372

crystalline microstructure with two values of Hχ in an uniaxial tensile test.373

Although the model does not predict a scaling of initial critical resolved shear374

stress, the curves show an apparent increase in yield strength. That increase375

is introduced by microplasticity and related strain gradient induced harden-376

ing. It is observed that the reduced gradient model produces a tanh-shaped377

scaling law with a capability to saturate at diminishing small grain sizes378

that contrast the unbounded increase in flow stress of conventional strain379

gradient plasticity (see also the analytical scaling law obtained on the two-380

phase laminate in Appendix A). The stress-strain curves homogenized over381

the whole polycrystal show varying hardening responses depending on the382

chosen micromorphic gradient parameters. As expected, a larger Hχ value383

generates greater hardening response. The modulus A scales the material384

intrinsic length and thereby increasing A, at a given microstructure size, re-385

sults in a harder response. Figure 6g contains early plasticity comparison386

between experimental and simulated tensile stress-strain curve. The model387

parameters were set based on previous non-gradient crystal plasticity study388

Lindroos et al. (2019), but with a low amount of length-scale hardening i.e.,389

A = 0.1 MPa.mm2 and Hχ = 104 MPa, to distinguish the length-scale hard-390

ening effect with different parametrization.391
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Figure 6: Stress strain evolution and scaling effects of different polycrystal aggregate
sizes. Scaling laws in (c) and (f) are plotted for three different values of macroscopic
strain, namely 0.01, 0.035 and 0.05. Hardening response of the model is adjusted with
the experimental curve using Hχ = 104 MPa and A = 0.1 MPa.mm2 as baseline with
corresponding prior austenite grain size to QT-steel (Lindroos et al., 2019). Polycrystalline
aggregate in (h) is scaled in the simulations. Numbers in legends of figure (a) and (d) refer
to aggregate width in [mm]. 23



Figure 7 visualizes conventional crystal plasticity response and several392

gradient plasticity cases at 5 % of macroscopic strain. At grain boundaries,393

interface conditions are chosen such as to have continuity of displacements394

and microslip, as well as usual and generalized tractions. As expected, reg-395

ularization is established with variations in generalized stress in the region396

with a high plastic mismatch, such as the vicinity of grain boundaries and397

at zones prone to slip localization. As a limiting low-end case, the non-398

regularized response with conventional crystal plasticity shows more freedom399

in developing higher magnitude of slip in plasticity dominated regions and400

the grain boundary region hardening is significantly smaller than for the401

gradient cases. Cumulative slip in the gradient cases becomes more diffuse402

because of the penalized development of strain gradients in the analyzed mi-403

crostructure. The smallest of the two investigated aggregate sizes, 1.0 mm404

and 0.1 mm, represents a case, whose deformation response is strongly in-405

fluenced by the scaling effects, as seen in Figure 7b. The generalized stress406

term gains more importance and the equivalent stress appears more spread-407

ing. This spreading is of similar type to the one observed with the norm of408

dislocation density tensor (Forest, 2008), in which this norm value is higher409

close to grain boundaries and begins to spread towards interiors of the grains410

with decreasing grain size. The characteristic length-scale, estimated with411

`c =
√
A/Hχ , plays a crucial role in the saturation of size effects. When the412

grain size is getting close to this value, gradient-induced hardening begins to413

saturate.414
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Figure 7: a) Computational polycrystal mesh, b) scaling effects on flow stress at 5 %
of axial strain generated by gradient parametrization, c) Von Mises stress contours, and
d) cumulative slip contours for two polycrystal size scales and with different gradient
plasticity parametrization.

Plastic deformation responses of conventional crystal plasticity and strain415

gradient plasticity are very distinct in the plots tracked along a certain path416

in the microstructure, which is shown in Figure 8. Denotation ”sc.” through-417

out the work refers to width of the polycrystalline RVE, e.g., sc 1.0 refers to418

the microstructure of width 1.0 mm. Plastic slip concentrations are observed419

for both cases over the chosen region in Figure 8c, yet the gradient plastic-420

ity case displays smoother distribution of plastic slip. Figure 8d shows that421

stress concentrations develop near the grain boundary as a result of the plas-422

tic incompatibility between two grains. The phenomenological basis of the423

constitutive equations in the present work does not explicitly use dislocation424

densities. However, the results indicate that the gradient model is capable of425
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bringing the significant extra-hardening generally related to the evolution of426

geometrically necessary dislocations at grain boundaries within the reach of427

the current model in a phenomenological sense. It is worth noting, however,428

that the interpretation of the single gradient variable is less intuitive than429

gradient variables used in other models. For instance, there is not a direct430

straightforward link such as the relation which exist between the curl of the431

plasticity tensor and the dislocation density tensor (Rys et al., 2020; Cordero432

et al., 2013).433

Figure 8: a) Plots over predefined path (in black) cumulative plastic slip contours for
conventional and strain gradient cases, b) slip and stress line plots on polycrystalline
microstructure, c) cumulative plastic slip profile, and d) stress distribution over the line
plots. Position coordinates of the gradient case with scaling 0.1 (100 µm) are upscaled 10
times to match normal 1.0 scaling (1000 µm) of the polycrystal aggregate in Figures c)
and d).
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3.3. Damage behavior of polycrystals434

The following addresses damage behavior provided by the model in a435

polycrystalline structure as an extension of the single crystal analyses. Fig-436

ure 9 shows stress-strain responses and damage evolution of non-regularized437

and regularized cases for two values of Hχ . Non-regularized slip with conven-438

tional crystal plasticity has a tendency to activate damage earlier because of439

the faster developing of localized slip zones. By reducing slip localization,440

whether or not damage is taken into account in the non-local variable γcum,441

the gradient-enhanced model postpones the onset of average cumulated dam-442

age increase.443

It becomes apparent that the model is capable of producing brittle and444

ductile-like evolution of damage. In the case damage is regularized together445

with slip, the softening and damage occur at lower rate, as expected. A446

physical interpretation would be that nano-scale cracks extend at a lower rate447

because of dislocation pile-ups interfering with crack progression, making the448

material more ductile. Brittle like behavior is observed when regularization449

is placed on slip alone. In that case, damage resistance decreases drastically450

faster, because generalized stress effects do not come into play in the cleavage451

resistance. This can be viewed to be in line with the deformation process452

zones producing different kinds of failure mechanisms in metallic materials.453

Further sensitivity analysis on the effect of model parameters is presented in454

Appendix D.455

Grain size affects not only the hardening behavior generated by the model456

but also the damage onset. It is seen that in the case of smaller grain size457

(sc. 0.1 mm), damage does not begin to develop at the same time as for458

the scale of 1.0 mm. Despite the fact that stress levels are larger for the459

smaller grain size, damage sets on at larger strains than what is observed460

with larger grains. Certain amount of slip is in fact required to decrease the461

cleavage resistance and eventually activate damage. Since plastic slip is less462

localized at grain boundaries and spread more towards the bulk of grains in463

the smaller scale microstructure, larger macroscopic strains are thus required464

in order to set damage on.465

It can be noted that generalized stresses are larger in the vicinity of466

grain boundaries, since strain gradients are more intense in these regions.467

It can therefore be argued that models accounting for grain size effects by468

using a common Hall-Petch (H-P) modification of slip resistance, τ sCRSS =469

τ0 + rs + KHP/
√
dg are fundamentally more prone to trigger damage unin-470

tentionally earlier. Such an extension indeed does not take into consideration471
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the heterogeneity of slip resistance increase which non-local models predict.472

However, the common H-P relation could still be used to offset the initial473

yield for very fine grain sizes with the present model.474

Figure 9: a),c) Stress-strain evolution for two length scales with and without damage
regularization, b),d) evolution of cumulated damage in a polycrystal, for two H

χ
values.

Aggregate sizes 1.0 and 0.1 mm are referred with sc. 1.0 and sc. 0.1 (scale).

The contributions of slip and damage to inelastic strain are further pre-475

sented in Figure 10 for slip-only, slip-damage and damage-only regulariza-476

tion. The figure plots only material points of the polycrystalline mesh with477

non-zero values of damage in order to concentrate on the characteristic of478

damaged zones. Hence, the probability plot does not include all plastic slip479

data points, only the ones with non-zero damage. Largest level of cumula-480

tive damage are reached when only regularization of slip is considered. In481

this case, extra hardening introduced by the regularization off-balances the482

slip-to-damage competition and favors crack growth in spite of the simulta-483

neous softening inflicted to slip resistance by damage. When regularization is484

placed on both slip and damage, both inelastic strain mechanisms contribute485

almost equally.486
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When regularization is placed only on damage in the spirit of Aslan et al.487

(2011a), slip is highly favored due to strong regularization of damage flow.488

These observations are visualized in Figure 11a,b. Plots along a specific489

path in the mesh, presented in Figure 11c,d display the smoothening effect490

of gradient model as well as the biased accumulation of either slip or damage491

depending on the choice of regularization.492

Figure 10: Distribution of cumulative plastic slip in a) correlation between cumulative slip
and cumulative damage in b) for material points with non-zero damage at the last step of
simulations with different regularization strategies and different values of H

χ
.

29



Figure 11: a) Slip localization and b) damage strain during uniaxial tension. Plot over
predefined path on damaged region c) cumulative damage strain, d) cumulative plastic
slip distribution, and e) prescribed path for position plots on polycrystalline mesh on c-d).
Contours are plotted on undeformed configuration for clarity.

3.4. Application to martensitic microstructures493

As an application for the model, tensile simulations were performed on a494

martensitic microstructure constructed from a scanning electron microscope495

electron back-scatter diffraction map. Computationally accessible sections496

intersecting several prior austenite grains and some of their internal blocks497

and packets are presented in Figure 12. Three subsections were investigated498

which correspond to different slices of the material produced by serial section-499

ing. The section RVEs are discretized to one element thickness. We provide500

a preliminary investigation of the slip localization and related damage initia-501

tion which was performed up to the level of the ultimate tensile strength and502

early damage progression, as well as a strategy for parametrization. Reg-503

ularization is placed on slip alone to avoid excessive limitation of damage504

growth and overall spread with a single length-scale operator. Furthermore,505
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we exclude the case with only damage regularization, since it does not include506

length-scale hardening of the microstructure naturally.507

The model parameters were first fitted to account for the hardening be-508

havior of steel with a plasticity model without damage on the early part of the509

stress-strain curve. At the same time, emphasis is placed on replicating the510

average size of slip localization zones, but not individual slip bands, observed511

in experiments. The nucleation and evolution of damage was introduced to512

capture material early cracking and softening behavior near ultimate tensile513

strength. The next step is the choice of the regularization length, related to514

the selection of parameter A. This choice amounts to setting the wanted res-515

olution in the simulations with finite width cracks whose thickness is chosen516

to be sufficiently smaller than the grain size but not too small for compu-517

tational efficiency. Once the resolution length is set, the remaining damage518

parameters can be calibrated from the softening part of the tensile curves519

of the studied material. The procedure is similar to the identification of520

ductile damage models (Scherer et al., 2021). The parameters used in the521

simulations with martensite-like meshes that differ from the ones presented522

in Table 2 are: τ s0 = 190 MPa, K = 190, Q = 7 MPa, b = 15, σ0
c = 1350523

MPa, H = −500 MPa, β = 1.9 MPa, h1..h8 = 1.0, Kd = 170, nd = 4. Length524

scale parameters were set to Hχ = 104 MPa and A = 0.01 MPa.mm2.525

Figure 13a,b show simulated stress-strain and cumulative damage curves.526

Of the chosen microstructures, both microstructure B and C show stronger527

hardening capability after initial micro-yield due to overall smaller grain size528

in the subdomain. This is seen in the nominal yield point in the simulations529

even though that the initial critical resolved shear stress was the same for all530

simulations. Initiation of damage takes place already around 5 % of macro-531

scopic strain. After this incubation period damage increases more rapidly532

after the ultimate tensile strength observed in the experimental curve. Fig-533

ures 13c,d illustrate the fields of cumulative plastic slip, cleavage resistance534

and cumulative damage in the microstructures A and C. Both show a signifi-535

cant plastic strain localization within 10 µm region, which was also observed536

in the experiments illustrated in Figure 13e. This shear concentrated re-537

gion includes several grains. Due to the chosen coupling between damage538

and slip and related decrease in cleavage resistance, damage tends to occur539

mainly within the slip rich region. Intense damage can be observed to select540

both intra-granular and grain boundary type damage mechanisms. This es-541

sentially depends on the local grain orientation, susceptibility to intra-grain542

strain localization, and stress concentrations arising from grain-to-grain in-543
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teractions.544

Figure 12: Three computational microstructures sub-sectioned from different EBSD mea-
surements.
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Figure 13: a) Experimental and simulated stress-strain curves, b) simulated cumulative
damage over the whole microstructure, c) and d) microstructure, cumulative plastic, effec-
tive cleavage resistance, and cumulative damage for microstructures A (ε = 10.5%) and C
(ε = 11.5%), respectively. e) SEM characterization of a small-scale tensile specimen with
strain localization and cracking.
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The present preliminary simulations imply that a parametric set capable545

of describing macroscopic stress-strain curve is obtainable. However, a more546

quantitative verification would be necessary to verify the strain fields with547

in-situ digital image correlation methodology on the present material to ad-548

dress the model’s local capability to present or suppress strain localization,549

such as suggested by (Zouaghi et al., 2016). This is one future item of work.550

For initial evaluation, Figure 13c show strain patterning on the surface of a551

small scale tensile sample deformed inside SEM. It was observed that slip552

localization precedes damage formation, as found in the simulations. How-553

ever, the observations from the experiment was not sufficient to quantify554

slip-to-damage causality and the identification of damage (fine scale cracks)555

is not straightforward based only on imaging of the surface deformation. It556

is desired to identify the relation of preceding slip localization to damage to557

establish coupling between the mechanisms. The resulting damage scattering558

with slip and damage regularization suggests, that separation of length-scales559

related to slip and damage might be necessary too, since the present approach560

rudimentary involves slip and damage under one regularization variable due561

to computational robustness.562

4. Discussion563

4.1. Scaling effects564

Modern advanced steels set aim to extreme strength and ductility. One565

key aspect of reaching this goal is the refinement of grain size and modifica-566

tion of grain morphologies, and enhancing the effect of hierarchical strength-567

ening mechanisms (arising from, e.g., martensite and bainite size, and nano-568

scale twins), assisted by secondary phases such as fine austenite intra-lath569

films, retained austenite as well as precipitates and carbides. Furthermore,570

the local strains can become large and plastic gradients may easily develop571

for such complex microstructure, especially when the material is imperfect572

for example with voids, cracks, inclusions, secondary soft and hard phases.573

Thus, the material design challenge of how to provide better properties is574

certainly not trivial. These aspects readily justify the need for length-scale575

dependent analysis tools operating at microstructural level from the strength-576

ening point of view and up to evolution based damage presentations, for577

which the present investigation provides a reasonable initial perspective. It578

should be noted that detailed analysis of strengthening mechanisms related579
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to GNDs, slip or kink bands, might further benefit of more elaborate general-580

ized continuum methods (Forest, 2009; Chang et al., 2016), instead of a single581

cumulative variable contributed by all slip systems and possibly damage.582

Nonetheless, finite sized slip bands and bundles, kink bands, and related583

size effects are necessary to be considered in materials operating at very fine584

effective grain sizes in general, whether their formation is controlled with585

the reduced (current) or full model (Rys et al., 2020; Chang et al., 2016).586

The present method aims to remain computationally efficient, provide suffi-587

cient regularization effects and give a tractable basis for further development588

and incorporation of features of generalized continua, all in a finite strain589

formalism.590

To this effect, Cordero et al. (2013) and Chang et al. (2016) observed591

a wide scaling capability for a micromorphic based crystal plasticity model,592

that can achieve extended scaling law exponents m from 0 to -2 (∆σ ∝ dm),593

in addition to conventional Hall-Petch like grain size exponent of -0.5. This594

model called microcurl utilizes the full curl of the plasticity deformation ten-595

sor, which can be related to dislocation density allowing interpretation of596

geometrically necessary dislocations (Rys et al., 2020; Chang et al., 2016).597

For the microcurl model and the present case, the scaling effects can be ratio-598

nalized and related to characteristic length scale `c, which has a dependency599

on two generalized moduli Hχ and A so that `c =
√
A/Hχ (Cordero et al.,600

2013). The control over the paramatrization allows to achieve different tanh-601

shaped scaling curves with respect to effective grain size, which was observed602

in Figure 6 and in Figure A.16 in Appendix A.603

4.2. Choice of regularization method604

In micromorphic crystal plasticity without damage, the higher order mod-605

ulus A relating the higher order stress to the gradient of the micromorphic606

variable has a physical meaning which is related typically to the characteris-607

tic size of dislocation pile-ups at obstacles like phase and grain boundaries,608

e.g., as discussed in (Forest and Sedláček, 2003) for dislocation based esti-609

mates for A. However, when the micromorphic approach is applied to damage610

phenomena in single crystals, as initially proposed by Aslan et al. (2011a)611

the physical meaning is somewhat lost since the model is used for the pur-612

pose of regularization of the damage model. In that case, the characteristic613

length associated with A sets a minimal resolution for the simulation, and614

the meaning is related to a modelling choice, discussed below. Events taking615
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place at a smaller scale are smeared out. This resolution can be phenomeno-616

logically related to the typical size of the damaged zone along the crack path.617

In the present work, the micromorphic approach was used for regularization618

purposes.619

It is found that the choice of model framework related to regularization of620

inelastic flow is not necessarily unique. In many cases, the decision is driven621

by the need to introduce length-scale driven extra-hardening and control of622

slip localization phenomenon. In addition, the regularization of crack like623

behavior as damage is an object of special interest when crack growth is624

considered in heterogeneous materials such as martensite. The model results625

showed that regularization placed on slip alone is capable of introducing626

length-scale relevant hardening and undertake necessary regularization of627

slip localization that indirectly affects damage behavior. This is an outcome628

of how the model couples damage and plasticity, however, the magnitude of629

this effect is much dependent on chosen parametrization as shown in Figure630

D.22.631

The second option to regularize both slip and damage allows the control of632

slip band formation in the first place and then the extra-hardening stabilizes633

damage rate and produces more bounded strain localization sites and damage634

bands. This was clearly observed in Figures 9 and 11. There is, however, a635

vital restriction with this alternative. If damage is taken to crack the material636

successfully and the crack is open, regularization should no longer be applied637

to avoid unrealistic hardening behavior of non-intact material regions. The638

same restriction exists in cyclic fatigue conditions under which the model639

allows smeared crack closure. Thus, one of its main advantage relies with640

the desired control of damage band width. The main restriction then exists641

with the slip bands themselves. They are not effectively regularized and the642

extra-hardening related to plasticity, and its inherent capability to provide643

grain size related scaling vanishes. As a result it is not possible to associate644

distinct length scales for the plasticity and damage phenomena, which can645

be seen as a drawback of the formulation. If necessary, it is however possible646

to consider two gradient contributions with two distinct length scales. This647

was not attempted in the present work as pointed out.648

4.3. Slip and damage in single and polycrystals649

The single crystal analyses showed that spurious mesh dependency related650

to softening with damage is reduced greatly or disappearing when compared651

to conventional crystal plasticity approach. This is one of the key objectives652
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of the model. Another aspect is that the model is anisotropic since it con-653

siders specific crystallographic planes for cleavage, which is in contrast to654

a variety of recent polycrystal models which mainly rely on isotropic dam-655

age formulations (Mareau, 2020). The model contains a single characteristic656

length parameter, A, corresponding to isotropic or cubic gradient contribu-657

tion, however, again the damage model itself is strongly anisotropic.658

As pointed out, the diffusivity or concentration of damaged bands can be659

controlled with a suitable parametrization. Besides, the length-scale harden-660

ing occurring in the polycrystalline structure and the constrained widening of661

damaged bands affect the failure predictions. Importantly, the single crystal662

results also show that defect (e.g. pores) induced slip and damage banding re-663

mains finite sized. Prediction of initiation of failure process depends largely664

on the smoothening subjected to slip. Therefore, the meaning of diffuse665

slip bands is mostly damage delaying and scattering. In contrast, the high666

stresses produced at grain boundaries by using high penalty factors together667

with concentrated slip flow, are a source promoting damage in the present668

model. This not only allows the intra-grain level damage, but also allows the669

interfacial damage to occur naturally in the model because of the projection670

of opening stress at cleavage planes. Characteristic martensite length-scales671

with relation to hardening and damage can be investigated with the model672

but careful quantification should be performed in future. Importantly, the673

guided length-scale saturation is a critical perk in terms of generating realis-674

tic damage patterning. The main advantage of the presented model is that675

it includes the possibility of accounting for cleavage cracking in polycrystals676

in combination with usual crystal plasticity.677

5. Future work678

An interesting future topic for lath martensitic steel is to introduce 3D679

tomography reconstructed models having defects, such as inclusions with re-680

alistic geometries, local microstructure (matrix and defect), and interfaces,681

to have a view on the effect of defects to damage evolution. With proper682

higher order description of the present model together with a detailed mi-683

crostructure, it is possible to investigate relations between lath martensite684

matrix hierarchies and strengthening and size effects related to a specific 3D685

geometry of the inclusions regarding susceptibility to damage. The objec-686

tive of this work was not to utilize dislocation density based formulation,687

however, it remains as an alternative to the currently proposed constitutive688
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equations. Furthermore, a comparison of the cleavage-based damage model689

used in this work, and the porosity-based single crystal ductile failure model690

developed in (Han et al., 2013; Ling et al., 2016) could also be envisaged.691

The micromorphic model presented in this work can be computationally692

demanding when large scale simulations are envisaged. The main reason693

of such a feature lies in the necessity to use a large penalty modulus Hχ694

in order to ensure quasi-equality between γcum and γχ. Given that it is695

combined with a quasi rate-independent viscoplastic formulation of crystal696

plasticity (i.e. a large viscous exponent n) time-integration of the resulting697

stiff constitutive equations requires small time steps to be performed. In698

order to alleviate such difficulties a non-local formulation based on a Lagrange699

multiplier approach as in Zhang et al. (2018) could be applied. Scherer700

et al. (2020) recently followed this path and compared the computational701

efficiency of micromorphic and Lagrangian approaches for rate-independent702

and viscoplastic crystal plasticity settings.703

6. Conclusions704

The main outcomes of the work are the following:705

• Reduced micromorphic crystal plasticity model produces size depen-706

dent scaling and bounded tanh-type hardening with respect to grain707

size produced by the regularization power of the model. Extra strain-708

hardening is observed near the grain boundaries and at strain localiza-709

tion sites. Decreasing grain size and its relation to model’s character-710

istic length-scale introduce spreading of strengthening, with a similar711

phenomenological characteristic to geometrically necessary dislocation712

assisted hardening. Similar hardening behavior is achievable with the713

microcurl -model (Cordero et al., 2013), making the reduced model very714

attractive as a computationally efficient alternative.715

• Different regularization techniques subjected to dislocation slip and716

crystalline level damage were investigated. Main advantage of the717

model with damage is the capability to produce regularized cleavage718

damage. Scaling effects can be introduced in the model by the con-719

trol of slip band evolution with the regulated slip flow rule. This choice720

leads to indirect coupling between slip and indirectly regulated damage,721

since slip regularization affects the width of zones susceptible to dam-722

age through the plasticity-damage constitutive coupling. When a single723
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micromorphic inelastic microstrain variable is contributed by both slip724

and damage mechanisms, the length-scale effects are observed and the725

damage evolution is more regulated and smoothened. Excessive dam-726

age regularization should be avoided, when the material is completely727

fractured to avoid unrealistic hardening.728

• The reduced micromorphic approach allows for analyzing of microscale729

deformation and damage phenomena in martensitic steels. An advan-730

tage of the model is the capability to generate size dependent hardening731

with proper higher order conditions at the hierarchial packet/block/lath732

and grain boundaries. Shear banding phenomenon can be controlled733

with regularization and damage initiation is dependent on length-scale734

hardening and shear band formation. Model parametrization is ad-735

justable to generate brittle or quasi-brittle type of fracture in marten-736

sitic microstructures related to shear bands or scattering of damage,737

depending on characteristics of failure evolution in the material. Pre-738

dictions of tensile failure with the model depend mainly on the scaling739

effects (grain size, slip localization), material tendency to cleavage frac-740

ture (atomistic setting and defect population), and non-local evolution741

of damage and its spreading (regularization, diffuse/localized and mi-742

crostructural scattering), all included in the same model concept.743
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Appendix A. Two-phase laminate without damage752

Following Forest (2008); Cordero et al. (2010); Aslan et al. (2011a), the753

behaviour of a periodic two-phase single crystal laminate under a macro-754

scopic shear loading is investigated. The periodic microstructure is sketched755

in Figure A.14 where a hard phase (h) is colored in red and a soft phase (s)756
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Figure A.14: Periodic two phase laminate geometry with the soft phase (gray) of width
s undergoing elasto-plastic deformations with a single slip system (n ,m ) and the hard
phase (red) of width h undergoing purely elastic deformations.

is colored in gray. The hard phase is purely elastic, while the soft phase can757

undergo elasto-plastic deformations. In the soft phase, plastic slip can occur758

only in a single slip system composed of the normal to slip plane n and slip759

direction m . We consider a linear hardening behaviour of the soft phase760

such that τc = τ0 +H0γ, where H0 is a positive linear hardening modulus. A761

macroscopic shear deformation γ̄ is applied in the crystal slip direction. The762

following displacements and micro-slip fields u (X ) and γχ(X ) are consid-763

ered764

u1 = γ̄x2 u2 = u2(x1) u3 = 0 γχ = γχ(x1) (A.1)

In the context of finite deformations and with the assumption of small elastic765

deformations this results in766

F∼ =

 1 γ̄ 0
u2,1 1 0
0 0 1

 , F∼
i =

 1 γ 0
0 1 0
0 0 1

 (A.2)

E∼
e
GL

=
1

2

(
F∼
eT .F∼

e − 1∼
)
' 1

2

 0 (γ̄ − γ) + u2,1 0
(γ̄ − γ) + u2,1 0 0

0 0 0

 (A.3)

From Eq. (16) and assumption of small elastic deformations one also obtains767

Π∼
M ' Π∼

e and therefore768

τ = Π∼
M : (m ⊗ n ) ' Π∼

e : (m ⊗ n )

= Πe
12 = 2C44E

e
GL,12 = C44(γ̄ − γ + u2,1)

(A.4)

where C44 refers to the shear modulus. The balance equation (9) imposes769

Πe
12 to be uniform across the laminate and thus also τ . Combining Eq. (10),770
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(20) and (21) yields the second order partial differential equation771

Aγχ,11 = Hχ(γχ − γ) (A.5)

Upon neglecting viscous stresses one has from the yield condition in the soft772

phase773

τ + S = τ0 +H0γ (A.6)

It follows that Eq. (A.5), in the soft phase (superscript s), is an hyperbolic774

linear in-homogeneous differential equation775

γsχ,11 − (ωs)2γsχ + (ωs)2
τ − τ0
H0

= 0, ωs =

√
H0Hs

χ

As(H0 +Hs
χ
)

(A.7)

1/ωs represents the characteristic length of the material in the soft phase.776

In the hard phase (superscript h) γ = 0 and Eq. (A.5) simply becomes an777

hyperbolic linear homogeneous second order differential equation778

γhχ,11 − (ωh)2γhχ = 0, ωh =

√
Hh
χ

Ah
(A.8)

1/ωh represents the characteristic length of the material in the hard phase.779

Eq. (A.7) and (A.8) can be solved analytically and separately in order to780

obtain the form of the profile in the whole periodic microstructure. One781

obtains an hyperbolic profile in each phase such that782

γχ(x1) =

 Cs cosh (ωsx1) +D x1 ∈
[
− s

2
; s
2

]
Ch cosh

(
ωh
(
x1 ∓ s+h

2

))
±x1 ∈

[
s
2
; s+h

2

] (A.9)

where the symmetry condition γχ(−x1) = γχ(x1) was used. Interestingly,783

exactly the same form of solution is found for the scalar micro-slip variable784

γχ as the one developed for the microdeformation component χ12 by Aslan785

et al. (2011a). To that extent the present model can be seen as a degenerate786

formulation of the so-called microcurl model. Although plastic slip is inactive787

in the hard elastic phase, the micro-slip variable does not vanish in this phase.788

This attribute is imposed by continuity of the higher order stress traction789

M1 at the interfaces. As explained by Cordero et al. (2010) this feature is790
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essential to trigger size effects. The coefficients Cs, D and Ch are integration791

constants which can be determined by considering interfaces and periodicity792

conditions.793

• Continuity of γχ at the interfaces (x1 = ±s/2)794

Cs cosh
(
ωs
s

2

)
+D = Ch cosh

(
ωh
s

2

)
(A.10)

• Continuity of the higher order traction M1 at the interfaces (x1 = ±s/2)795

Csωs sinh
(
ωs
s

2

)
= −Chωh sinh

(
ωh
s

2

)
(A.11)

• Periodicity of the displacement component u2.796

Recalling Eq. (A.4), the yield condition in the soft phase Eq. (A.6) and797

γ = 0 in the hard phase it comes798

u2,1 =


τ0
C44

− γ̄ +
Asωs

2
Cs

H0

cosh (ωsx1) +
H0 + C44

C44

D x1 ∈
[
− s

2
; s
2

]
τ0
C44

− γ̄ +
H0

C44

D ±x1 ∈
[
s
2
; s+h

2

](A.12)

Periodicity of u2 enforces the average of u2,1 over the whole laminate to799

vanish. Therefore, introducing the microstructure length ` = s + h, one800

obtains801 (
τ0
C44

− γ̄
)
`+

2AsωsCs

H0

sinh
(
ωs
s

2

)
+
H0`+ C44s

C44

D = 0 (A.13)

We introduce the soft phase fraction fs = s/`. The yield condition in the802

soft phase (A.6) allows to derive the macroscopic (mean) stress Π
e

12803

Π
e

12 =

∫ `
2

− `
2

τdX1 = τ0 +
H0

fs
〈γ〉 − As

f s
〈γsχ,11〉 = τ0 +H0D (A.14)

where it was used according to (A.5) that 〈γ〉 =
〈
γsχ − (As/Hs

χ
)γsχ,11

〉
. From804

the latter it also follows from (A.9)805

〈γ〉 =
2AsωsCs

H0`
sinh

(
ωs
fs`

2

)
+ fsD (A.15)
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Table A.3: Set of material parameters used in the single slip analytical resolution and
finite element simulations in accordance with Aslan et al. (2011a).

Phase µ [MPa] τ0 [MPa] H [MPa] Hχ [MPa] A [MPa.mm2]

Soft (s) 35000 40 5000 5× 105 1× 10−3

Hard (h) 35000 - - 5× 105 5× 10−5

Introducing the constant κ as806

κ =
coth

(
ωs fs`

2

)
Asωs

+
coth

(
ωh (1−fs)`

2

)
Ahωh

(A.16)

from Eq. (A.10), (A.11) and (A.15) one identifies the integration constants807

involved in (A.9)808

Cs = −〈γ〉
[
Asωs sinh

(
ωs
fs`

2

)(
fsκ−

2H0

`

)]−1

(A.17)

D = 〈γ〉
[
fs −

2

H0`κ

]−1

(A.18)

Ch = 〈γ〉
[
Ahωh sinh

(
ωh

(1− fs)`
2

)(
fsκ−

2H0

`

)]−1

(A.19)

Figure A.15 plots the analytical and numerically computed micro-slip profiles809

obtained for three different couples (Ah, As) and other material parameters,810

taken from (Aslan et al., 2011a), are presented in Table A.3. The penalization811

moduli are taken equal in both phases Hχ = Hs
χ

= Hh
χ

and the fraction812

of soft phase is chosen as fs = 0.7. The numerical solutions (solid lines)813

obtained by finite element analysis fit very well the analytical solutions and814

are also in agreement with the solutions found in (Aslan et al., 2011a). For815

a small characteristic length of the soft phase, non-negligible gradients can816

exist in the microstructure and thus the micro-slip profile appears rounded817

(red circles). As the characteristic length increases, gradients of micro-slip818

tend to vanish resulting in an almost flat profile in the soft phase. Continuity819

of γχ and non-vanishing values in the elastic phase are unfailingly observed820

as expected.821
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Figure A.15: Analytical (solid lines) and numerically computed (colored dots) profiles of
micro-slip in the periodic two-phase laminate at 0.2% macroscopic shear strain obtained
with the micromorphic model with material parameters presented in Table A.3. (1) in
absence of mismatch of the characteristic length between the two phases As = Ah =
5× 10−5 MPa.mm2, (2) an intermediate mismatch between the two phases As = 1× 10−3

MPa.mm2 and Ah = 5×10−5 MPa.mm2, (3) a stronger mismatch between the two phases
As = 5 × 10−2 MPa.mm2 and Ah = 5 × 10−5 MPa.mm2. The fraction of soft phase is
fs = 0.7 and the microstructure size ` = 1 µm.
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Figure A.16: Evolution of the normalized macroscopic stress Π
e

12|0.2/τ0 at 0.2% macro-
scopic shear strain as a function of the microstructure length ` for several values of the
penalization parameter H

χ
with fs = 0.7 and material parameters presented in Table A.3.

Figure A.16 plots the evolution of the macroscopic stress Π
e

12 at 0.2%822

overall shear deformation obtained from Eq. (A.14) as a function of the mi-823

crostructure length `. Several values of the penalty parameter Hχ(= Hs
χ

=824

Hh
χ
) are used and other material parameters are presented in Table A.3. For825

large microstructure no significant size effects are observed and Hχ plays826

almost no role on the macroscopic shear stress. Nevertheless as the mi-827

crostructure size decreases size effects become substantial and the effect of828

Hχ becomes paramount. The effect of Hχ pertains two major aspects. First,829

in the log-log plot of Figure A.16 the slope of the scaling law at intermediate830

microstructure length becomes steeper as Hχ increases. In addition, the sat-831

uration value of Π
e

12|0.2 for small microstructures increases with Hχ . All in832

all Hχ induces jointly a more sensitive dependence to the microstucture size833

and more important size effects.834

Appendix B. Convergence with respect to mesh size835

In order to demonstrate the regularization capability of the single crystal836

damage model, when both slip and damage are accounted for regularization837

(see Eq. 4), three mesh densities are considered. The convergence with re-838
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spect to mesh size was also verified for the two other formulations (see Eq.839

(4) or Eq. (6)), but results are not reported here for conciseness. Meshes840

used for mesh density convergence validation are composed of 80, 400 and841

1440 elements and respectively possess 2112, 9880 and 34480 degrees of free-842

dom. Mesh convergence analysis is performed on a BCC single crystal with843

crystal axes [100], [010] and [001] initially respectively aligned with the ba-844

sis vectors. Figure B.17a shows the engineering stress-strain curves (black)845

and volume average cumulated damage curves (blue) obtained with the dif-846

ferent mesh densities. It can be noted that before acceleration of average847

cumulated damage (strains lower than ∼ 0.1) all meshes result in identical848

predictions in terms of stress and average cumulated damage. The onset of849

acceleration of average cumulated damage, and corresponding stress drop, is850

slightly anticipated with the coarsest mesh. However, from the results ob-851

tained with the two most refined meshes it is clear that mesh convergence,852

in terms of macroscopic measures, is attained. In Figure B.17b are plotted,853

at ∆L/L0 = 0.1, the local values of cumulated damage along the blue line854

(where damage localizes because of the load-bearing section reduction due to855

the void) depicted in Figure 1. It can be observed that the coarsest mesh pre-856

dicts the largest value of local cumulated damage over the whole profile line.857

In contrast the two most refined meshes produce less intense and rather close858

local cumulated damage profiles. Far from the highly damaged zone some859

discrepancies can be observed in terms of local cumulated damage. However,860

in the vicinity of the void, where damage is intense both most refined meshes861

are in agreement.862

Appendix C. Influence of material parameters β and H863

Influence of the coupling parameter β in Eq. (28) and (32) is assessed.864

This parameter scales the relation between damage and critical resolved shear865

stress driven softening. The larger β is, the more softening induced by dam-866

age there is. Furthermore, larger values of β also make damage and slip867

resistance to decrease faster. Nevertheless β only plays a role on the slip868

resistance once damage is activated. These observations appear clearly in869

Figure C.18 where several values of β ranging between 2 and 20 were used.870

It can be noticed indeed that prior to onset of damage all curves are iden-871

tical regardless of the value of β. However damage sets on earlier with the872

largest β value since the damage resistance has decreased more rapidly. The873

computation with largest value of β also predicts a rapid acceleration of aver-874
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Figure B.17: Mesh size convergence analysis on [100]− [010]− [001] crystal orientation in
terms of (a) macroscopic stress-strain and average cumulated damage measures and (b)
local cumulated damage at ∆L/L0 = 0.1 when acceleration of average cumulated damage
sets on. H

χ
is set to 104 MPa.

age cumulated damage which is accompanied by an early macroscopic stress875

drop. On the contrary the lowest value of β postpones onset of damage, be-876

cause the slip resistance decreases slowly. In addition the increase of average877

cumulated damage and thus the softening part of the stress-strain curve are878

delayed. It appears that β can hence be used as a scaling parameter that879

settles the local strain at which damage will start to occur and how it will880

affect acceleration of slip resistance drop provoking final failure.881

The additional term Hd is added in Eq. (32) in order to accelerate882

the decline of damage resistance. This triggers apparition of localization of883

damage into crack-like zone as noted in (Aslan et al., 2011a). Influence of the884

linear modulus H is analyzed and presented in Figure C.19 which displays885

macroscopic stress-strain and average cumulative damage curves obtained886

with H ∈ {103; 104} MPa. On the macroscopic stress-strain behaviour the887

main effect of H is to step up the softening rate. When H is increased888

a sharper drop of the stress is predicted. At local level a larger value of H889

induces a faster reduction of slip resistance and as feedback damage increases890

faster. This results in an early rise of average cumulated damage. As a891

collateral effect softening occurs slightly earlier on the macroscopic stress-892

strain curve. A side effect of the rapid acceleration of softening when a large893

value of H is used is that damage becomes more localized. This is discernable894

on damage fields but also evidenced on the average cumulated curves where a895
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Figure C.18: Influence of parameter β on (a) the stess-strain behaviour and (b) average
cumulated damage evolution for a [100]− [010]− [001] crystal orientation with H

χ
= 104

MPa.

flattening of damage augmentation can be observed for the largest H values.896

897

Appendix D. Effect of strain gradient and damage parametrization898
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Figure C.19: Influence of parameter H on damage onset and softening acceleration for
[100] − [010] − [001] crystal orientation with H

χ
= 104 MPa. Parameter H is treated as

negative value to cause softening.

Plasticity and damage evolution in the model are contributed by several899

plasticity and damage related parameters. The following analysis assesses900

the phenomena originating from different parametrizations in polycrystals,901

either related to the strain-gradient and plasticity-damage parts. General-902

ized moduli Hχ and A grant the scale-dependency in the model that influ-903

ences primarily slip localization and the following damage. Furthermore, the904

explicit constitutive relations placed on coupling of plasticity and damage905

imposes direct interaction between the two mechanisms of inelastic strain in906

the model. It follows that regularization further affects the coupling directly907

or indirectly as previously observed in Figure 10.908

Figure D.20 shows the effect of three values of penalty modulus Hχ . The909

characteristic length scale `c also changes when the value of Hχ increases in910

addition to the actual changes in grain size related scaling exponent, given911

that A is set constant. A polycrystal microstructure shown in Figure 7a was912

used in the simulations. Damage band shape and magnitude in Figure D.20c913

suggest that the penalization caused by Hχ = 104 MPa does not yet reach914

the saturation like behavior of the greater Hχ values, confirming the single915

crystal results. The two higher Hχ values produce very similar damage bands,916

which in turn indicates that Hχ = 105 MPa generally suffices as a penalty917

term value for slip and damage regulated flow.918
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Figure D.20: a) Polycrystal hardening response for three H
χ

values, and b) effective
damage responses, and c) line plot over a damage region at 5.5 % of axial strain, using
slip and damage regularization mode. Modulus A is set to 1.0 MPa.mm2.

It is characteristic for reduced micromorphic model that, increasing value919

of the higher order modulus A widens the effective slip band width and920

reduces cumulative slip absolute magnitude, when modulus A is constant921

(Ling et al., 2018b; Scherer et al., 2019). At the same time, spreading of the922

extra-hardening affected zone occurs at the microstructure level in conjunc-923

tion with grain-grain interactions. The stress-strain response in Figure D.21a924

elucidates this phenomenon with the realization of stronger hardening rate of925

the polycrystal. The simulations were performed with regularization placed926

on both slip and damage. The hardening characteristics of higher value of927

Hχ = 105 MPa increases the local stresses that trigger damage at an earlier928

stage than with Hχ = 104 MPa. This observation is contrary to what is ob-929

served in Figure 9 mainly because the stresses are elevated to a such extend930

that damage is triggered more and more by the influence of stress and not931

prior slip related softening of cleavage resistance. Parameter A can be used932

to evolve length-scale during deformation since it does not need remain con-933

stant (Dahlberg and Bo̊asen, 2019; Scherer et al., 2019; Chang et al., 2016).934

This alternative formulation allows to control the finite size of shear band935

thickness and therefore it could also be used to control damage in the shear936

band region.937
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Figure D.21: a) Stress-strain curves for three higher order modulus and two penalty mod-
ulus values, and b) average damage evolution in the microstructure for each simulation.
Origin is shifted for different cases in the stress-strain plot for clarity.

As has become clear with single crystal simulations, the severity of dam-938

age is controlled with two main parameters after nucleation, the coupling939

parameter β and softening parameter H. Here, their meaning is further940

examined with polycrystalline structure. One physical interpretation for ex-941

ercising slow or fast damage rate in the simulations is the control over the for-942

mation of nano-cracks and their extension to micro-cracks, which eventually943

is perceived as short-crack growth towards failure critical crack formation.944

Figure D.22a,b present the effect of softening parameter H on overall soft-945

ening behavior for a polycrystalline microstructure. A large parameter value946

promotes very rapid brittle-like damage growth soon after damage onset, sim-947

ilarly to single crystal cases. A decreasing value then oppositely reflects more948

ductile behavior. Coupling parameter β dictates how early damage develops949

after plastic slip concentration begin to form and eventually assists strain and950

damage localization due to two-way coupling effect of the parameter. High β951

value effectively decreases cleavage resistance at highly deformed zones in the952

first place, promoting rapid deterioration. Relative smooth softening curves953

are achievable whenever softening parameter H is chosen low.954
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Figure D.22: Effect of damage softening parameter H on a) stress-strain behavior, b)
damage evolution with β = 5.0. Effect of plasticity-damage coupling parameter β on a)
stress-strain behavior and b) damage evolution with H = −1750 MPa . Micromorphic
parameters are H

χ
= 105 MPa and A = 1.0 MPa.mm2.

Regularization of both slip and damage provides significant additional955

control on damage propagation. The curves feature small or large incubation956

softening periods after damage initiation before softening occurs on more957

detrimental slope. At increasing values of either or both β and H, the rapid958

softening following the incubation period begins to feature similar slopes than959

without dual-regularization. Whenever regularization is placed on slip alone,960

a damage biased flow begins to overtake after damage initiation irrespective961

of the value of β, supporting the observed behavior in Figure 10.962
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